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Abstract

Oligodendrocytes (OLs) are CNS glial cells that insulate nerve fibers for the fast
conduction of action potentials. Myelination is known to be a highly dynamic process
whose underlying dynamics are currently poorly understood. Recent studies have em-
phasized the role of calcium as a regulator for activity-dependent myelination. This
report presents a data-driven model for calcium transients in the oligodendrocyte lin-
eage based on results from Rui et al. 2020. Time-series region-of-interest (ROI) ∆F/F
calcium data in a culture of oligodendrocytes show spontaneous irregular transients
depending on store-operated calcium entry. Here, we argue that these transients are
stochastically-generated local travellings waves in the oligodendrocyte structure. This
was done by developing a spatiotemporal computational model that incorporates cal-
cium mobilization in and out of the cytosol, using the flux-balance equation. Our
modelling efforts show the frequency of these transients increases with the inward mem-
brane flux of calcium, explaining the observation of fast transients in the presence of
high frequency neural activity. This supports a role for calcium in the maturation of
the oligodendrocyte lineage, as a regulator for the growth of the actin cytoskeleton or
as a transcription/translation factor for myelin basic protein (MBP). Our spatiotem-
poral simulations reveal that these waves annihilate upon collision and thus must have
an absolute refractory period. These results thus provide insights into the mechanism
regulating calcium transients in OPCs and show that they are random occurrences that
do not encode information in their pattern.

1 Introduction

1.1 Motivation

Understanding neural plasticity is of paramount importance in determining how we grow

and learn as a species. However, much of the progress made in the last century in un-

derstanding plasticity in the brain has been primarily ”synapse-centric”. In fact, much of

the modern understanding is reliant on the timing of the arrival of action potentials to

the post-synaptic terminal [14]. However, the role of myelin, a fatty insulating substance

known to be a key determinant of nerve conduction velocity, and thus the arrival timing of

action potentials, remains relatively unexplored. Evidence shows as myelinated neurons in
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the CNS become more active, their myelin sheath elongates, allowing them to transmit sig-

nals more quickly. This creates a positive feedback system known as ”activity-dependent

myelination”, where neurons that are firing more frequently have myelin sheath growth

leading to greater conduction velocity and, thus, potential to fire even more frequently, as

the neural network requires [1].

Calcium, a key signalling molecule in many physiological processes, has been implicated

in activity-dependent myelin growth in oligodendrocytes in several studies. Indeed, calcium

has been shown to be implicated in proliferation, differentiation and local protein synthesis

in oligodendrocyte progenitor cells (OPCs).

1.2 The role of calcium in oligodendrocyte cell biology

Figure 1: A schematic of the roles of different receptors and signalling molecules of the

calcium dynamics of oligodendrocytes and potential implications for myelin basic protein

transcription, translation and degradation.
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1.2.1 Axon-dependent regulation

Axons of active nerve cells signal to local oligodendrocytes in two major ways: the release of

vesicular glutamate and the release intracellular ATP through a channel [21]. ATP release

occurs though a volume-regulated anion channel. This channel is activated by the osmotic

swelling of an axon due to influx of ions during an action potential [6]. Additionally, vesic-

ular release of glutamate occurs in an activity-dependent manner in both developing and

mature oligodendrocytes [10]. Both ATP and glutamate thus play a role in calcium dynam-

ics of myelinating oligodendrocytes. Variations in the release patterns of these molecules

along a single axon could explain the heterogenous myelin distributions we see in the human

cortex [20].

1.2.2 Signaling within oligodendrocytes

Oligodendrocytes express a number of receptors and channels governing the influx and efflux

of calcium. These include voltage-gated calcium channels, AMPA-R, NMDA-R, mGluRs,

GABA receptors, IP3-Rs, store-operated calcium channels (SOCCs) and purinergic recep-

tors including P2X7 and P2Y1 [16]. It has been shown extensively that calcium currents

across the membrane and somatic calcium release from the endoplasmic reticulum (ER)

(through calcium-induced calcium-release mechanism) lead to transient oscillations in in-

tracellular calcium in several different cell types [17]. In glia, it has been shown experi-

mentally that the amplitude (maximum calcium concentration) of individual transients is

positively correlated with transient duration [1]. Both in vitro and in vivo studies have fur-

ther demonstrated that high-amplitude slow calcium transients lead to myelin contraction,

while low-amplitude fast calcium transients lead to myelin elongation. Approximately half

of the calcium transients in developing oligodendrocytes are driven by axonal action poten-

tials, but the remaining ones occur independently of action potentials [9]. Interestingly, the

frequency of calcium transients is positively correlated with speed of myelin sheath elonga-

tion. This is thought to be linked to the role of calcium in actin polymerization in the myelin

sheath [1]. Additionally, it has been experimentally demonstrated that these oscillations

are activity-dependent, although the underlying mechanism remains unclear. Studies have

shown that sodium channel blocker TTX, blocks action potentials and, thus, decreases cal-
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cium transient frequency, slowing myelin sheath growth [13]. This result thus suggests that

there is a critical calcium transient frequency that marks the switch from sheath elongation

to contraction. These dynamics may play a role in adult activity-dependent myelination

which takes place in both motor and social learning [14].

Stretch-activated calcium channels (SACs) could also contribute to the somatic flux

of calcium in oligodendrocytes. These channels are often implicated in cellular motility

[21] and have been linked to mechano-electric feedback regulating calcium transients in

cardiomyocytes [4]. Osmotic swelling due to the influx of calcium and other ions could

translate into the activation of these mechanosensitive channels and contribute to the cal-

cium current.

Additionally, NMDA receptors in oligodendrocytes have been linked to activity-dependent

myelination. These receptors are localized at the distal processes and the myelin sheath

[10]. When these receptors open, an influx of calcium results in the activation and deactiva-

tion of a number of cellular pathways localized to the sheath. The activity of these channels

is controlled by glutamate-dependent mGluRs and signalling protein Fyn. Blocking vesic-

ular glutamate release and Fyn has shown to halt myelin growth and retraction in vitro

[21]. Some studies claim NMDARs are not necessary for myelination and that NMDAR-

dependent signalling depends on neuregulin and BDNF which are thought to regulate their

activity, expression, and trafficking, in addition to being upstream regulators of transcrip-

tion factors for myelination [5] [12]. This regulation implies myelination is modulated by,

but not entirely dependent on, vesicular release of glutamate in relation to coupled mGluR

and NMDARs. Figure 1 depicts a summary of the role of calcium in oligodendrocyte cell

biology.

1.3 Properties of spontaneous calcium transients

To understand these calcium transients in the activity-dependent case, it is first necessary to

understand them in the absence of neurons- designated ”spontaneous” calcium transients.

These transients must rely solely on channels acting in the absence of neurotransmitters

like glutamate and ATP.

Rui et al. (2020) suggests the importance of various factors on the integrity of these

transients, depicted in Figure 2. Indeed, the authors show that the transients rely on some
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Figure 2: Data recorded by Rui et al. 2020 from a given region of interest, (ROI) of length

∼ 20 µm on a branch of a complex OPC. The change in fluorescence, ∆F
F , from fluorescent

dye Fluo-4 is used to determine the relative change in calcium concentration over time [18].

external calcium flux through the cell membrane, as putting cells in a calcium-free buffer

removes oscillations all together.

Finally, the nature of these transients varies throughout the development of the OL

lineage. Through OL development, cells begin as oligodendrocyte progenitor (OPC) bipo-

lar cells, with two large protrusions from the cell soma, then develop a simple structure,

with some limited branching in the arm structure. These cells then form a complex actin

cytoskeleton with a large degree of branching and, finally, become myelinating when they

are able to produce MBP. In bipolar cells, transients are low amplitude and infrequent. As

the cell grows, transients become more frequent and higher amplitude until the cell reaches

the complex OPC stage. Finally, once the cell begins to produce myelin, transients become

much less frequent and lower amplitude once again. Evidence suggests that, at this stage,

many of these transients become localized to the myelin sheath itself [18].

Additionally, Bassetti et al. (2020) argue the transients depend on calcium flux through

ryanodine receptors on the endoplasmic reticulum (ER) membrane as inhibiting them with

ryanodine results in oscillations that are purely sub-threshold [2]. They also make a case for

the role of the sodium calcium exchanger, although the source of depolarization resulting

in significant flux through this channel is unknown.

While these factors have recently become elucidated, other potential contingencies of

these transients remain unknown.
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1.4 Modelling calcium

Calcium dynamics is a vast field with enormous variations in the way computational models

are constructed. One of the simplest and best studied models was proposed by Li and

Rinzel in 1994. According to this model, calcium concentration in the cytosol C and the

open fracion of IP3Rs h are described by

dC

dt
= JIP3 − JSERCA + JLEAK , (1)

dh

dt
= ah(1− h)− bhh, (2)

where the activation rate ah and deactivation rate bh of IP3 receptors are given by

ah = a2d2
IP3 + d1

IP3 + d3
and bh = a2C. (3)

The IP3R flux JIP3 is given by

JIP3 = c1v1(
IP3

IP3 + d1
)3(

C

C + d5
)3h3(C − CER), (4)

which closely follows a Hodgkin-Huxley-like flux with open probability determined by cy-

tosolic calcium, IP3 concentration, and a time dependent term h multiplying the calcium

gradient. The SERCA pump flux into the ER and leak across the ER membrane are

described by

JSERCA =
v3C

2

k2
3 + C2

and JLEAK = c1v2(C − CER), (5)

a second-order Hill function in cytosolic calcium and linear term multiplying the gradient

respectively. Finally, in this model, calcium is conserved intracellularly and, thus, ER

calcium concentration is given by

CER =
(c0 − C)

c1
. (6)

This model is a classic slow-fast oscillator with a linear-like nullcline intersecting a cubic-

like nullcline. The dynamics of the model depend wholly on the location of intersection of

these nullclines. An intersection in the left branch is a low but excitable steady state (a
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stable focus) representing insufficient cytosolic calcium levels/IP3 concentration for calcium-

induced-calcium-release to take place at the ER. When the intersection occurs in the middle

branch of the cubic nullcline, the system crosses a Hopf bifurcation into a stable limit cycle

where cytosolic calcium is oscillatory. Finally, an intersection at the right branch of the

cubic nullcline describes where cytosolic calcium concentrations are too high for sustainable

oscillations, a state that is usually cytotoxic [11].

2 Methods

2.1 Stochasticity

2.1.1 Measuring stochasticity

A method proposed by Sneyd et al. 2016 to quantify the level of irregularity in a signal

and its cause involves plotting the average inter-spike interval and its standard deviation

of a calcium time-series collected from many cells. Snyed reasons in this analysis that in a

culture of cells with a heterogeneous characteristics will produce calcium time-series with

different average period and standard deviation. Nonetheless, an unchanging mechanism

for the generation of spikes should produce a relationship between these points. As such,

from this relationship, we can draw conclusions about the nature of this mechanism. Sneyd

posits that the expected relationship between the standard deviation σ of oscillations and

the average period Tavg should roughly follow the the linear equation

σ = α(Tavg − Tmin) + σmin, (7)

where α is the coefficient of variation, Tmin is the lowest average period observed and σmin

is the lowest standard deviation measured.

The parameter α indicates how the degree of irregularity between transients changes as

their average period changes. In the case that α = 0, the level of irregularity is constant

irrespective of the length between spikes (if σ = 0 here, the spikes are always perfectly

regular). Conversely, when α = 1, transients can vary nearly and much as their average

period, potentially within some absolute refractory period. In this case, transients can be

well represented by a pure Poisson process. Sneyd argues that a strong linear relationship
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between σ and Tavg is robust to variations in many parameters. Such a relationship, he

concludes, can only be produced by purely stochastic spike generation since no other mech-

anism (eg. a perturbed system in its oscillatory regime) would yield such a well defined

relationship [19].

In this analysis, a Python script is used to pick-peaks in the data and simulation. Linear

fitting is used to extract parameters.

2.1.2 Explaining stochasticity

Calcium induced calcium release happens on a spatially hierarchical structure. Single chan-

nels are fundamentally stochastic and open and close on the order of µs to ms. Channels

form clusters that release calcium when channels flux synchonously, with some level of

cooperativity. Entire clusters typically flux calcium on the order of 10s to 100s of ms.

Finally, when clusters, usually about 5-7 µm apart, release calcium synchronously, a cell

wide calcium transient occurs. This requirement for synchrony of many random events on

a hierarchical scale is expected to produce the irregularity observed [19].

2.2 Modifying the Li-Rinzel model

Incorporating stochasticity into the model, to mimic the role of a spatial hierarchy, we

modify Equation 2

dh

dt
= ah(1− h)− bhh+ σζ, (8)

where ζ ∼ N (µ = 0, σ2 = 1) is a normally distributed random variable and σ is its

standard deviation. Equation 8 is a stochastic differential equation drifting about the

expected value for h as previously described. This model is constructed so that in the

absence of noise, it sits at the low steady state, a stable focus, and a sufficiently large

noise-induced perturbation will lead to a large excursion from steady state, producing a

calcium transient. The parameter σ can be adjusted to control the proportion of these

perturbations that induce a transient to those that are simply sub-threshold.

Additionally, in oligodendrocytes, calcium is clearly not conserved intracellularly and

plays a significant role in model dynamics. Thus, we can rewrite Equations 1 and 6 as
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dC

dt
= JER + JIN − koutC, (9)

dCER
dt

= −γJER, (10)

where the term koutC represents calcium exocytosis, γ encapsulates the ratio volume in the

ER to the cytosol, and the flux through the ER membrane JER is given by

JER = JIP3 + JRY R + JLEAK − JSERCA. (11)

The contribution of the ryanodine receptors JRY R can be modelled by the third-order Hill

function in cytosolic calcium multiplying the intermembrane gradient

JRY R =
vrC

3

C3 + k3
r

(C − CER). (12)

The inward flux

JIN = vin + vtdep, (13)

can be broken into its static and dynamic quantities, vin and vtdep respectively. The time-

dependent quantity vtdep is largely phenomenological since the precise dependence of the

inward flux on cytosolic calcium is unknown and it’s main purpose is to attenuate a given

transient to match signal shape observed in the data. The model is dynamically sufficient

in its absence. This quantity is given by

dvtdep
dt

=
v∞ − vtdep
τtdep

for v∞ = vmaxC. (14)

Here, the inward flux lags cytosolic calcium by time constant τtdep.

2.3 Spatial calcium transients

2.3.1 A reinforcement mechanism

Finally, these transients are fundamentally spatial. A simple Gillespie simulation [7] shows

calcium diffusion is not sufficient for the rate of calcium flow in oligodendrocyte branches

and relative change in concentration cannot be simply explained by diffusion [8]. We thus
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propose a reinforcement mechanism whereby a transient at one location along an oligo-

dendrocyte branch will diffuse to an adjacent site along the ER membrane, initiating a

transient at each adjacent site by calcium induced calcium release [19]. As such, we ex-

pect each random perturbation to initiate a local bidirectional transient in the branching

structure. Hence, we modify Equation 9

∂C

∂t
= Dc

∂2C

∂x2
+ JER + JIN − koutC, (15)

where Dc is the diffusion coefficient of buffered calcium.

2.3.2 Solving PDEs on a graph

There is a reason to believe that the branching structure of oligodendrocytes is linked to

the nature of these transients. As demonstrated by Rui et al. 2020, the transients become

larger and more frequent as the total length and connectivity of branches in an OL lineage

cell increase. To investigate this, general purpose software was written to solve systems of

n coupled equations of the form

∂yi
∂t

= fi(t, yj ,
∂yj
∂x

,
∂2yj
∂x2

) for i = 1, 2, ..., n and any j in {1, 2, ..., n}, (16)

along the edges of an arbitrary graph.

In 1D Euclidean space, a variable y (continuous in space) can be discretized into N

compartments. The following second derivative matrix G can be constructed by finite

differences

~y ′′ = (∆x)−2G~y = (∆x)−2



1 −2 1 0 . . . 0 0 0

0 1 −2 1 . . . 0 0 0

0 0 1 −2 . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . 1 −2 1





y1

y2

y3

...

yN


. (17)

In a graph, however, diffusion at a compartment with more than two outward edges is

expected to have a greater diffusive flux than a compartment along an edge (ie. only two

directions for a particle to diffuse). Specifically, if equations are to be solved at the vertices

with edges describing proximity, one would expect the elements
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Gij =


1 for i ∼ j

−dij for i = j

0 otherwise

, (18)

where i ∼ j denotes two vertices i and j are connected by an edge and dij is the degree of

the ith vertex, ie. the number of edges it touches.

When solving equations along edges with defined length, one needs to split an edge

into compartments of size ∆x, equivalently define each compartment as a vertex in a far

larger graph, and then compute the second derivative matrix by Equation 18. However,

to minimize space and time complexity, one can generate G by realizing many of the

compartments will be adjacent to only two others, ie. fall in the middle of an edge, and

thus G will look very much like in the 1D Euclidean case (Equation 17). A simplified outline

of an original iterative algorithm for computing G is given below.

Algorithm 1 Second derivative matrix of graph

0: procedure discretize(num comparts)

0: initialize G as in 1D Euclidean case

0: number compartments

0: compute a cumulative sum of compartment number at nodes

0: for each vertex do

0: cut default connections

0: assign junction according to a set convention

0: edit G according to adjacency/degree

0: end for

Graph code is made as an open-source (Python) and complied into a reusable package

for solving ubiquitous PDEs on arbitrary graph structures. It is available at https://

github.com/kushasareen/oligo.
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3 Results

3.1 Stochasticity

Figure 3: Tavg −σ plot of the experimental data (A) and simulation (B) are shown. Notice

the similarity between the two and random nature of both.

To determine if the transient spike in calcium data and simulation are purely stochastic, we

used Eq. (7) to quatify the relation between the standard deviation (σ) of the oscillations

and the average interspike interval (ISI) as suggested by Sneyd et al 2016 [19]. Figure 3

shows that both the simulations and the data exhibit a slope near 1, and an absolute refrac-

tory period that is comparable. The relatively large slope implies the calcium transients

are mostly random, an outcome similar to that seen in other glial cells [19].

3.2 Graph diffusion

Figure 4 depicts a proof of concept for the graph PDE solver by simulating diffusion. Par-

ticles are initialized on the middle of the branch from vertex 1 to 2. Notice a greater

concentration of particles is found near vertex 2 than vertex 1 since particles have fewer

directions to diffuse, a phenomenon not directly observed in simple linear diffusion. This

solver is used for model simulations on a single edge to minimize complication, although

future experiments could elucidate the role of oligodendrocyte structure on calcium tran-

sients.
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Figure 4: A proof-of-concept of an original graph PDE solver. Many particles are initialized

on the edge from vertex 1 to 2 on an arbitrary graph structure (B). (A) shows the evolution

of these particles in time along each branch. A diffusion coefficient of 1 µm2

s is used and

concentrations are below 1 M. When particles cross a vertex on (B), they begin to appear

on different branch on (A).

3.3 Model output

Figure 5 portrays a sample time-series simulation produced by the model. The evolution in

time of dynamic variables of the model is shown. The first panel shows cytosolic calcium

concentration over time. This matches what is seen experimentally, in that spikes are

irregular and the slope of the upstroke is similar. The slope of the downstroke is, however,

far quicker than that seen in the data. The second panel shows the time-dependent inward

flux, lagging cytosolic calcium transients induced by calcium flux from the ER. Panel 3

shows the fraction of open IP3 receptors. This fraction is noisy and variable but not

necessarily in phase with the calcium transients. Finally, the last panel shows the ER

calcium concentration, in phase with cyctosolic calcium, resulting in a prototypical sawtooth

pattern.

This model is dynamically very similar to the Li-Rinzel model. Both the IP3 concentra-

tion and inward membrane calcium flux contribute to sustainable cytosolic calcium levels.

As such, increasing either of these parameters in the absence of noise will move the model
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Figure 5: A sample time course simulation of the model over 900 seconds. From bottom

to top, the panels show cytosolic calcium concentration, time-dependent inward flux, open-

fraction of IP3 receptors and ER calcium concentration.

through the three regimes defined by the branches of the cubic nullcline. Additionally, when

noise is present, increasing inward membrane flux brings the model closer to the oscillatory

regime. As a result, smaller perturbations are able to initiate a transient which in turn

causes the average frequency of transients to increase.

Figure 6 illustrates a meshgrid of calcium transients in space and in time. On average,

transients travel 15-20 µm along and edge. This is in line with what is seen experimentally.

Since the model spikes are driven by a large excursion from a stable focus, the model

is not excitable during a transient, implying a small absolute refractory period. Notice, for

instance, what happened at x = 35 µm and t = 2020 s in Figure 6. Here, two waves initiate

at neighbouring points and travel to x = 35 µm at a later time. These waves collide and

annihilate, neither continuing to travel along its previous trajectory.

3.4 Dynamics

Figure 7 depicts the nullclines of the 3D system. For visualization, the time-dependent

inward flux is omitted as it is the least influential on model dynamics. As in the 2D case, a
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Figure 6: A meshgrid of cytosolic calcium concentration along a 40 µm branch over 150

seconds. Stochastically generated travelling waves are shown to travel in both directions

along the branch.

noise-induced perturbation leads to a large deviation from the stable steady-state. Indeed,

this model is simply an expansion of the 2D case, accounting for flux through the cell

membrane [11].

Figure 8 demonstrates the dependence of the transients on inward flux, flux through

ryanodine receptors, and SERCA pumping replenishing the ER calcium stores. Experimen-

tal analogs from the literature are included for comparison. Maintaining these relationships

ensures model robustness and the integrity of any model predictions.

4 Discussion

4.1 Implications

The reduced spatial scale in the oligodendrocyte arm amplifies the role of noise in the

production of transients. This trend is seen in other cells with similar branching structure

like astrocytes and microglia.

The time dependent inward flux vtdep represents a cooperative inward calcium flux

that lags cytosolic calcium by approximately 15 seconds. There are a number of potential

physiological sources for such a flux. It has been speculated that membrane volatage in

oligodendrocytes is highly variable. In fact, Berret et al. 2017 shows that oligodendrocytes

are excitable cells, though the source of depolarizations in an oligodendrocyte-only culture
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Figure 7: 3D nullclines for a simplified model, analogous to well-studied 2D case. The

model is at steady state at the intersection the 3 manifolds near C = 0.1 µM, h = 0.7 and

CER = 8.0 µM. A noise-induced perturbation results in large excursion before returning to

steady state.

remains unclear [3]. It’s possible some local depolarization following a transient could result

in increased inward flux through voltage gated calcium channels. Additionally, stretch-

activated calcium channels could potentially lead to local osmotic stress during an ER

initiated transient, resulting in increased flux through the cell membrane. Finally, calcium

could simply act as an agonist for a different membrane receptor, producing a calcium influx

that follows a transient.

Travelling waves in models of excitable media are a common occurrence. For example,

Oprea et al. 2020 explores spatiotemporal waves in the cortex, similar to those observed in

animal models as well as humans [15]. In our model, a wave initiated at a given point will

diffuse to its neighbourhood, moving the nullcline intersection closer to the middle branch,

thus making the region far more excitable. It is believed travelling waves in the OL struc-

ture, much like those in the cortex, convey information between regions that are spatially

separated. Its believed this information could be a cue for MBP transcription, involving

calmodulin, in the cell soma initiated by signals at the distal OL processes. Alternatively,
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a general increase transient frequency due to increased calcium conductivity could result in

the increased rate of growth of the actin cytoskeleton, a process known to involve calcium.

This type of model is highly plastic and generalizable. For instance, when a full model

of spontaneous calcium transients is fully developed, the activity-dependent component

is easy to implement by simply introducing a boundary condition for compartments with

degree only 1.

4.2 Shortcomings

Techniques for numerically fitting systems of partial stochastic differential equations are

not currently computationally feasible. Indeed, finding a set of parameters that produces

simulations that visually match the data is a difficult task. Different parameter sets produce

a large variation in the qualitative output of the model. Particularly, a parameter set where

the downstroke of a simulated transient matches that of a transient observed experimentally

was difficult to find.

Additionally, it remains to be seen exactly which sources of membrane flux are impor-

tant. The vtdep term in the model suggests some cooperative inward calcium flux with a

time constant near 15 seconds. Whether other membrane fluxes are significant and the

particular role they play, however, is an experimental problem that cannot be solved by

purely theoretical work.

Furthermore, the significance of these stochastically produced spatial transients is brought

into question. Previous literature has posited that these transients encode information in

their patterns. However, since the transients seem to be generated stochastically, this seems

unlikely. Many questions remain about the origin and function of these transients. Which

particular signals are these transients meant to transmit in space? Is there a functional

role of the stochasticity or is it purely a byproduct of the small spatial scale? What are the

mechanisms by which they are implicated in OL maturation and myelin sheath growth?
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Figure 8: A comparison of empirical and simulated results when various flux are inhibited.

(A) depicits the calcium trace when SERCA pumping, and hence the contribution of ER

fluxes, is eliminated. Data from Bassetti et al. 2020 vs. simulation. (B) shows when ryan-

odine receptors are inhibited, simulated and from Bassetti et al. 2020 [2]. (C) demonstrates

calcium transients depend on a positive inward flux through the cell membrane. Results

from Rui et al. 2020 [18].

5 Conclusions

Recent evidence suggests the role of calcium dynamics in the regulation of activity-dependent

myelination. A data-driven model for calcium transients in the oligodendrocyte lineage

based on time-series ∆F/F calcium data shows spontaneous irregular transients. Tran-

sients appear to be stochastically-generated local travellings waves in the oligodendrocyte

structure. Furthermore, modelling efforts show the frequency of these transients increases

with the inward membrane flux of calcium, explaining the observation of fast transients
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in the presence of high frequency neural activity. This supports a role for calcium in the

maturation of the oligodendrocyte lineage, perhaps a regulator for the growth of the actin

cytoskeleton or as a transcription/translation factor for MBP. We argue these transients

must have an absolute refractory period and cannot encode information in their patterns.

The model can be improved by determining a parameter set that better qualitatively

fits the profile of the experimental data. A clear future direction is to include activity-

dependent channels in our modelling. This adjustment should allow for expansion of the

model to predict how exactly myelin remodelling depends on neural activity.
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[10] R. Káradóttir and D. Attwell. Neurotransmitter receptors in the life and death of

oligodendrocytes. Neuroscience, 145:1426-1438, 2007.

[11] Y. Li and J. Rinzel. Equations for insp3 receptor-mediated [ca2+]i oscillations derived

from a detailed kinetic model: a hodgkin-huxley like formalism. Journal of Theoretical

Biology, 166, 1994.

[12] I. Lundgaard, A. Luzhynskaya, and JH. Stockley. Neuregulin and bdnf induce a switch

to nmda receptor-dependent myelination by oligodendrocytes. PLoS Biology, 11:12,

2013.

[13] R. Miller. Calcium control of myelin sheath growth. Nature Neuroscience, 21:2–3,

2018.

[14] M. Monje. Myelin plasticity and nervous system function. Annual Review of Neuro-

science, 41:61–76, 2018.

[15] L. Oprea, C. Pack, and A. Khadra. Machine classification of spatiotemporal patterns:

automated parameter search in a rebounding spiking network. Cognitive Neurodynam-

ics, 14:267–280, 2020.

20



[16] PM. Paez and DA. Lyons. Calcium signaling in the oligodendrocyte lineage: Regulators

and consequences. Annual Review of Neuroscience, 7:169, 2020.

[17] J. Poledna. Mechanism of intracellular calcium transients. General Physiological Bio-

physics, 10:475-484, 1991.

[18] Y. Rui, S. Pollitt, K. Myers, Y. Feng, and J. Zheng. Spontaneous local calcium

transients regulate oligodendrocyte development in culture through store operated

calcium entry and release. eNeuro, 2020.

[19] J. Snyed, G. Dupont, M. Falcke, and V. Kirk. Models of Calcium Signalling. Springer,

New York, NY, 1nd edition, 2016.

[20] GS Tomassy, DR Berger, and HH Chen. Distinct profiles of myelin distribution along

single axons of pyramidal neurons in the neocortex. Science, pages 319–324, 2014.

[21] H. Wake, PR. Lee, and RD. Fields. Control of local protein synthesis and initial events

in myelination by action potentials. Science, 333:1647-1651, 2001.

21


